PhD: Exploring effective strategies of communicating flood forecasting using a CHANS modelling framework

Loughborough University

Loughborough, UK 🇬🇧

Project details

Project rationale

Surface water flooding – also referred to as pluvial flooding – is caused by intense, highly localised convective rainfall creating excessive runoff that cannot drain away quickly enough. According to a recent Defra report [1], it is the UK’s most widespread form of flooding, with 3.2m properties at risk in England alone. Recent events, e.g., the July 2021 floods in London, demonstrate inadequate preparedness for such events [2]. Several recent UK government reports highlight an urgent need for surface water flood risk mitigation and management so owners of at-risk homes and businesses can better protect their property (e.g., [1]).

Under the National Surface Water Management Action Plan [1], the Environment Agency (EA), Met Office and Flood Forecasting Centre are committed to exploring improved surface water flood forecasting. Such an urgent need is further recognised at the “Surface water flood forecasting and real-time communication symposium” jointly organised by EA, Met Office, Leeds and Oxford Universities in Jan 2024. The challenge of effective communication of forecasts and warnings was further emphasised at the symposium, and users specifically pointed out flood forecasting and warning is ‘30% technology and 70% communication’. This project will deliver inter-disciplinary research to address this important challenge.

Methodology

The aim is to apply a newly developed Coupled Human And Natural Systems (CHANS) model [3] to simulate and understand the interactive human behaviours and social dynamics before and during a surface water flood event induced by intense rainfall. This will be related to different scenarios of flood forecasting and warning provision. Subsequently, we will design and carry out systematic numerical experiments to explore effective strategies of communicating flood forecasting and warning.

The adopted CHANS modelling framework consists of a distributed agent-based model (ABM) to represent the human systems and a hydrodynamic model (the High-Performance Integrated hydrodynamic Modelling System (HiPIMS)) to predict the flooding dynamics in a natural system. The CHANS model is implemented on high-performance multiple graphics processing units to support large-scale high-resolution simulations.

In the ABM, agents can be flexibly defined and used to represent individuals, households and related organisations to depict the interactive social dynamics interrupted by flooding or other driving factors. Data from different sources, e.g. UK national census, social media, literature, will be processed to understand and describe human and organisational behaviours. Participatory Action Research methodologies will be deployed to unlock a deeper understanding of different groups and types of agents and their interactions in order to construct the coupled human and natural system in the case study site (jointly decided with the partners). Scenarios will be co-developed and simulated to understand the human response to flood forecasting and warnings and explore effective communication strategies that maximize their impact on flood forecasting and warning effectiveness.

94% of Loughborough’s research impact is rated world-leading or internationally excellent. REF 2021

Supervisors

Primary Supervisor: Qiuhua Liang

Secondary supervisor: Katie Parsons

Entry requirements

Our entry requirements are listed using standard UK undergraduate degree classifications i.e. first-class honours, upper second-class honours and lower second-class honours. To learn the equivalent for your country, please choose it from the drop-down below.          

Entry requirements for United Kingdom

Applicants should have, or expect to achieve, at least a 2:1 honours degree (or equivalent) in a relevant subject such as geography, economics, or engineering. A relevant master’s degree and/or experience is desirable. 

EU and Overseas applicants should achieve an IELTS score of 6.5 with at least 6.0 in each competency.

English language requirements

Applicants must meet the minimum English language requirements. Further details are available on the International website.

Fees and funding

Tuition fees for 2024-25 entry

UK fee

Fully funded Full-time degree per annum

International fee

£27,500 Full-time degree per annum

Tuition fees for 2025-26 entry

UK fee

Fully funded Full-time degree per annum

International fee

£28,600 Full-time degree per annum

Fees for the 2024-25 academic year apply to projects starting in October 2024, January 2025, April 2025 and July 2025.Fees for the 2025-26 academic year apply to projects starting in October 2025.

Find out more about research degree funding

Tuition fees cover the cost of your teaching, assessment and operating University facilities such as the library, IT equipment and other support services. University fees and charges can be paid in advance and there are several methods of payment, including online payments and payment by instalment. Fees are reviewed annually and are likely to increase to take into account inflationary pressures.

Additional information

Studentship type – UKRI through Flood-CDT.

The studentship is for 3.5 years and provides a tax-free stipend of £19,237 per annum plus tuition fees at the UK rate. Excellent International candidates are eligible for a full international fee waiver however due to UKRI funding rules, no more than 30% of the studentships funded by this grant can be awarded to International candidates.

How to apply

All applications should be made online.

Under programme name, select Architecture, Building and Civil Engineering. Please quote the advertised reference number: FCDT-25-LU6 in your application.

This PhD is being advertised as part of the Centre for Doctoral Training for Resilient Flood Futures (FLOOD-CDT). Further details about FLOOD-CDT can be found here. Please note, that your application will be assessed upon:

  1. Motivation and Career Aspirations;
  2. Potential & Intellectual Excellence;
  3. Suitability for specific project
  4. Fit to FLOOD-CDT.

So please familiarise yourselves with FLOOD-CDT before applying. During the application process candidates will need to upload:

  • a one-page statement of your research interests in flooding and FLOOD-CDT and your rationale for your choice of project
  • a curriculum vitae giving details of your academic record and stating your research interests
  • academic transcripts and degree certificates (translated if not in English)
  • a IELTS/TOEFL certificate, if applicable.

You are encouraged to contact potential supervisors by email to discuss project specific aspects of the proposed prior to submitting your application. If you have any general questions, please contact floodcdt@soton.ac.uk.


POSITION TYPE

ORGANIZATION TYPE

EXPERIENCE-LEVEL

DEGREE REQUIRED

You ad could be here!