PhD: Tyre and break-wear microplastics: degradation in soil and surface water

 (via FindAPhD)
University of Birmingham
Birmingham, United Kingdom
Position Type: 
Organization Type: 
University/Academia/Research/Think tank
Experience Level: 
Not Specified


Please note: this job post has expired! To the best of our knowledge, this job is no longer available and this page remains here for archival purposes only.

About the Project

Environmental microplastic pollution has become omnipresent with mismanaged plastic waste now contaminating freshwater and marine ecosystems, groundwater, soils, and even the atmosphere. Assessing the risks of environmental exposure to microplastics requires detailed understanding of their sources as well as of their environmental fate and transport. This includes how they age (alter their structure, break down and interact with the environment) and potentially leach and/or adsorb other harmful substances.

Recently, car tyre brake “wear and tear” materials have been identified as a major source of microplastic pollution to freshwater environments and soils as well as to the air, in particular in congested inner-city environments. Detection of tyre and brake pad materials in environmental samples is intrinsically challenging due to their colour and difficulties to detect by standard FTIR and Raman spectroscopy. Therefore, we are facing a significant knowledge gap as to how these particles behave in our environment, bearing the risk of significant undetected environmental impacts now, and in the future.

This PhD project will investigate the fate and transport of car tyre and brake wear related microplastics in freshwater and soil environments, analysing how particles interact with the soil and water environments and their constituents (biomolecules / natural organic matter, other particulate matter, microorganisms) while they are transported, how they degrade and what their residence times are under variable soil and flow conditions. The results of this PhD research will contribute to our understanding of the environmental exposure and risks formed by car tyre and break ware products, which is of critical interest to regulators as well as the transport, infrastructure and manufacturing industry sectors.

How to apply

Applications need to be submitted via the University of Birmingham postgraduate portal by midnight on 11.01.2021. Please first check whether the primary supervisor is within Geography, Earth and Environmental Sciences, or in Biosciences, and click on the corresponding PhD program on the application page.

This application should include

• a brief cover letter, CV, and the contact details for at least two referees

• a CENTA application form

• the supervisor and title of the project you are applying for under the Research Information section of the application form.

Referee’s will be invited to submit their references once you submit your application, but we strongly encourage applicants to ensure referees are aware of your submission and expecting a reference request from us. Students are also encouraged to visit and explore the additional information available on the CENTA website.


Brandon J., Goldstein M., Ohman M.D. Long-term aging and degradation of microplastic particles: Comparing in situ oceanic and experimental weathering patterns. Marine Pollution Bulletin, 2016, 110, 299-308.
Drummond J.D., Nel H.A., Packman A.I., Krause S. Significance of Hyporheic Exchange for Predicting Microplastic Fate in Rivers. Environ. Sci. Technol. Lett. 2020, 7, 10, 727–732.
Karbalaei, S., Hanachi, P., Walker, T.R. et al. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environ Sci Pollut Res. 2018, 25, 36046–36063.
Nel H., Krause S., Sambrook Smith G.H., Lynch I. Simple yet effective modifications to the operation of the Sediment Isolation Microplastic unit to avoid polyvinyl chloride (PVC) contamination. MethodsX, 2019, 6, 2656-2661.
Nel H.A., Chetwynd A.J., Kelleher L., Lynch I., Mansfield I., Margenat H., Onoja S., Oppenheimer P.G., Sambrook Smith G.H., Krause S. Detection limits are central to improve reporting standards when using Nile red for microplastic quantification. Chemosphere, 2021, 263, 127953.
Tibbetts J., Krause S., Lynch I., Sambrook Smith G.H. Abundance, Distribution, and Drivers of Microplastic Contamination in Urban River Environments. Water 2018, 10(11), 1597;