PhD: NERC Panorama DTP - Rivers on Ice via FindAPhD

University of Hull

Hull, UK 🇬🇧

About the Project

Oveview

Melting icecaps and glaciers dictate sea-level rise on Earth. The largest contributions to meltwater discharge and sea-level rise occur in the summer months when surface ablation is highest. Depending on scale and seasonal temperature variations, some meltwater channels are ephemeral and some are perennial. Most channels tend to form due to the flow of water released during snowmelt and ice melt in the spring. During surface ablation, meltwater flow sheets gradually concentrate along longitudinal lines of structural weakness in the ice or become channelized due to local factors that favour melting. Channel geometry and planform morphology is mainly driven by thermal erosion (melting), a process that is enhanced by solar radiation through the water column.

Compared with the cases of alluvial and bedrock channels, the study of meltwater channels on ice has received little attention [1], and experimental work reported to date has focused on small-scale meandering channels only [2]. Moreover, production, storage, and transport of meltwater over ice is one of the least-studied processes on Earth [3] and meltwater like channels have also been recognized on the South Pole of Titan (one of Saturn’s moons), where rivers of liquid methane carve their way through frozen landscapes [4]. Understanding, the dynamics of meltwater channels is therefore crucial to predict the rate of sea level rise in response to climate change and to understand environmental conditions on extra-terrestrial bodies.

Meltwater channels over ice show many features also observed in alluvial and bedrock rivers, such as terraces/bars, overhangs, knickpoints (waterfalls), features analogous to scroll bars due to channel bend migration, and bend cut-offs. Meltwater channels also have certain features that are unique to them. For example, in these channels flows may increase downstream even in the absence of tributaries or overland flow due to thermal melting of the channel bed and walls and the role of direct solar radiation through the flowing water. This and other phenomena dependent on temperature gradients and flow characteristics (e.g. depth, velocity), among other variables, create channels with different planform morphologies. This PhD project will focus on identifying the tipping points responsible for them.

Logistical challenges and the current global pandemic due to Covid-19 render field research in glacial environments difficult. In spite of the advances in numerical models and remote sensing capabilities, laboratory experiments are a viable and exciting complementary path to better understand the processes that create and modify rivers on ice.

You should normally have, or expect to obtain, at least 2:1 Honours degree (or international equivalent) in a related subject.

See the Panorama website for more information on the Project, the Supervisory Team, training and the working environment. 


Funding Notes

This project is part of the NERC Panorama Doctoral Training Programme. Appointed candidates will be fully funded for 3.5 years including full tuition fees, and stipend at the UKRI rate plus a training grant.
Please see the Panorama website for full information on funding and how to apply.


POSITION TYPE

ORGANIZATION TYPE

EXPERIENCE-LEVEL

DEGREE REQUIRED